Lattice structures in stainless steel 17-4PH manufactured via selective laser melting (SLM) process: dimensional accuracy, satellites formation, compressive response and printing parameters optimization

نویسندگان

چکیده

Abstract By the term, lattice structures are intended topologically ordered open-celled consisting of one or more repeating unit cells. Technological development and especially growth additive manufacturing (AM) industry allows innovative structural design, including complex structure. Selective laser melting (SLM) is an AM process that enables manufacture space filling structures. This work investigated influence most important parameter settings on lattices printability, focusing geometrical accuracy, quantity powders adhered to main frame (satellites) their compression behaviour. The parameters such as power, scan speed layer height affect vigorously quality mechanical properties part. aim paper evaluate how different combinations cellular structures’ printing. Twenty-four with cubic rhombic dodecahedron cells made stainless steel 17-4PH (AISI-630) were printed using SLM parameters. Each structure was analysed considering its geometrical, topological properties. Finally, best combination evaluated comparing results achieved. Although this steel, physical principles related printing described generally true for process. Therefore, adopted approach could still be suitable also all other materials commonly used technology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microstructures and Properties of 17-4 PH Stainless Steel Fabricated by Selective Laser Melting

Precipitation-hardened (PH) stainless steels have been widely used as structural materials and related applications in marine environments, power plants (light-water and pressurized water reactors), and chemical industries because of their good mechanical properties and corrosion resistance at typical service temperatures below 300oC. 17-4 PH (A1S1630) stainless steel (15–17.5 Cr, 3–5 Ni, 3–5 C...

متن کامل

Investigating the microstructure and hardness of 17-4PH steel and Stellite cladded by direct laser deposition process on 17-4PH steel substrate

The purpose of this research is to laser cladding of stellite6 and stainless steel 17-4PH powders on the substrate of stainless steel 17-4PH, and investigate its solidification microstructure. The results showed that the microstructure of the stellite6 cladding has a cobalt solid solution ground phase with an FCC structure and Cr7C3 and Cr23C6 carbides. Also, the values ​​of the primary dendrit...

متن کامل

Investigating the microstructure and hardness of 17-4PH steel and Stellite cladded by direct laser deposition process on 17-4PH steel substrate

The purpose of this research is to laser cladding of stellite6 and stainless steel 17-4PH powders on the substrate of stainless steel 17-4PH, and investigate its solidification microstructure. The results showed that the microstructure of the stellite6 cladding has a cobalt solid solution ground phase with an FCC structure and Cr7C3 and Cr23C6 carbides. Also, the values ​​of the primary dendrit...

متن کامل

Machinability Improvement of 17-4PH Stainless Steel by Cryogenic Cooling

17-4PH stainless steel is a martensitic precipitation hardening stainless steel that provides an outstanding combination of high strength, good corrosion resistance, good mechanical properties, good toughness in both base metal and welds, and short time, low-temperature heat treatments that minimize warpage and scaling. This valuable alloy is widely used in the aerospace, nuclear, chemical, pet...

متن کامل

Machinability Improvement of 17-4PH Stainless Steel by Cryogenic Cooling

17-4PH stainless steel is a martensitic precipitation hardening stainless steel that provides an outstanding combination of high strength, good corrosion resistance, good mechanical properties, good toughness in both base metal and welds, and short time, low-temperature heat treatments that minimize warpage and scaling. This valuable alloy is widely used in the aerospace, nuclear, chemical, pet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The International Journal of Advanced Manufacturing Technology

سال: 2022

ISSN: ['1433-3015', '0268-3768']

DOI: https://doi.org/10.1007/s00170-022-08946-2